Optique adaptative

Système à optique adaptative du télescope du mont Palomar Le télescope de l'observatoire du mont Palomar est équipé d'un système à optique adaptative - Crédit photo: la Nasa   


L'optique adaptative est une technique dont le but consiste à restaurer en temps réel la qualité des images détériorées par la turbulence atmosphérique.

La caractérisation précise de la turbulence atmosphérique et ses effets sur les images est un problème complexe. Cependant, pour en simplifier l'explication, on peut considérer que l'atmosphère terrestre, la couche d'air qui nous sépare de l'espace, est en perpétuel mouvement, et ce à une multitude d'échelles. Des grands mouvements de masses d'air à l'échelle continentale, aux micro-mouvements de minuscules bulles d'air roulant les unes sur les autres, en passant par les couches poussées par des vents de directions différentes suivant l'altitude, tous contribuent à la turbulence atmosphérique. Or ces masses d'air variées, en mouvement, ont des caractéristiques optiques différentes, essentiellement dues à leur différentes températures (l'indice de réfraction de l'air, la vitesse de propagation de la lumière en son sein, varient avec la température). Ainsi, au travers de l'air, les images sont continuellement déformées.

Pour simplifier, c'est un peu comme si les ondes nous arrivaient après avoir été réfléchies par un miroir déformant. De plus ce `miroir' équivalent change très vite de forme au cours du temps.

Les effets de la turbulence sont le plus souvent peu sensibles à l'oeil nu, de jour, car le pouvoir de résolution  de l'oeil la finesse des détails qu'il peut distinguer- n'est pas très grand, et les masses d'air que notre regard traversegif ne sont en général pas assez grandes ou assez turbulentes pour que l'effet de la turbulence soit sensible. Cependant il y a au moins deux cas où cet effet est perceptible: lorsque l'on regarde par dessus une étendue assez importante de bitume chauffé par le Soleil en été (parking, route), les images sont déformées, dansantes...! Et la nuit, lorsque l'on regarde les étoiles, la scintillation (le clignotement / tremblement) que l'on peut observer sous nos cieux agités est aussi une conséquence de l'agitation de l'air au dessus de nous.

Les effets de la turbulence sont ainsi particulièrement sensibles pour l'astronome, qui, du sol, tente de former des images à partir d'un faisceau qui a traversé des kilomètres d'atmosphère. De plus, la perturbation due à la turbulence atmosphérique, déjà sensible pour les étoiles à l'oeil nu, va devenir de plus en plus gênante, à mesure que l'instrument va se perfectionner. Plus on tente de ``grossir'' les images, d'augmenter le pouvoir de résolution de l'instrument, plus la turbulence se montre comme une barrière infranchissable.

En pratique, au sol, contrairement à la situation prévalant dans l'espace, la résolution des images brutes que l'ont peut obtenir au foyer d'un grand télescope ne dépend pas de la taille du miroir mais de la turbulence. Suivant les conditions (site, vents,...), la turbulence peut être plus ou moins importante. On peut caractériser la turbulence par plusieurs critères.

Définissons brièvement quelques termes forts: un télescope est un système optique à miroirs. Le diamètre  d'un télescope est le diamètre de la surface collectrice principale: son miroir primaire  (principal) concave. Pour la plupart des montages optiques de télescopes, un rayon frappant le miroir primaire est réfléchi vers le miroir secondaire , qui le renvoie vers le foyer. Le foyer  est le point où le télescope concentre les rayons lumineux parallèles à son axe (les étoiles sont pratiquement à l'infini, à l'échelle des télescopes, les rayons lumineux qu'elles émettent sont donc parallèles). La droite, orthogonale au miroir primaire et reliant les centres des miroirs primaires et secondaires est l'axe optique  du télescope. La surface telle que pour tout point qui la compose il passe un rayon lumineux parallèle à l'axe optique qui passe ensuite par le foyer, cette surface est appelée la pupille . A l'entrée du télescope, elle est équivalente au disque du primaire, moins le disque du secondaire qui forme l'obstruction centrale  (l'``ombre'' du secondaire obstrue une partie de la surface collectrice du primaire).

Le front d'onde: en schématisant, imaginons une source ponctuelle, monochromatique. Elle émet des rayons lumineux se propageant depuis la source, dans toutes les directions. L'onde lumineuse émise à un instant T0 forme à l'instant T0+dT une sphère de rayon c.dT (c vitesse de la lumière (environ 300 000 km/s)), c'est le front d'onde. Une source située à l'infini produit donc une onde plane (une sphère de rayon tendant vers l'infini tend localement vers un plan (courbure nulle)). Les ondes lumineuses provenant d'étoiles extrêmement lointaines forment donc un front d'onde plan, avant la traversée de l'atmosphère terrestre. La conséquence de cette traversée de zones non homogènes de l'atmosphère est que le front d'onde à l'entrée de la pupille du télescope se trouve être non plus plan, mais déformé.

La résolution théorique d'un télescope parfait, sans turbulence, est caractérisée par sa limite de diffraction . Il s'agit de la taille angulaire de l'image d'une source ponctuelle située à l'infini, formée au foyer. Pour un télescope de 3,6 m, pour une lumière visible rouge, on obtient ainsi 0,1'' seconde d'angle. Une telle résolution correspond environ à pouvoir séparer les deux phares d'une voiture à près de quatre mille kilomètres, ou encore, pour nous placer dans le domaine astronomique, à séparer une planète (comme Saturne) de son étoile (comme le Soleil) à une distance de près de 300 années-lumière.

Pour caractériser la turbulence, on utilise souvent le terme ``seeing '', qui indique la largeur à mi-hauteur (souvent abrégé par FWHM ) angulaire de l'image d'une source ponctuelle d'une longueur d'onde donnée, déformée par la turbulence. La largeur à mi-hauteur d'une image est une valeur extrêmement utilisée pour caractériser la finesse d'une image stellaire, en effet, pour une image non parfaite, le diamètre d'une image n'est pas défini précisément puisque sa forme n'est pas une figure géométrique et peut avoir un halo très étendu. On utilise donc la largeur (moyenne radiale) considérée en coupant l'image à la moitié de son maximum. Cette valeur dépend bien sûr du site, et pour un site donné, elle varie au cours du temps en fonction des conditions atmosphériques.

Cependant, c'est bien cette valeur due à la turbulence, et non la taille du télescope (sa limite de diffraction) qui fixe la résolution d'un télescope classique dès qu'il dépasse quelques dizaines de centimètres. En effet, pour les sites astronomiques, le seeing moyen est de l'ordre d'une demi à une seconde d'angle dans le visible, et peut atteindre plusieurs secondes dans de mauvaises conditions ou de mauvais sites. La largeur à mi-hauteur d'une tache d'Airy (figure de diffraction), à la même longueur d'onde, soit pour un télescope de 3,6 m environ 30 millièmes de seconde d'angle, au moins quinze fois plus fine que le meilleur seeing.

C'est à cause de la turbulence atmosphérique que les astronomes s'attachent à placer leurs observatoires sous les cieux les plus purs, en s'élevant en altitude par exemple, la masse d'air entre le télescope et l'objet observée est réduite d'autant et la qualité des images s'accroît.

Connaissant les conséquences de la turbulence, qui mettent à égalité un télescope d'amateur de vingt centimètres et un géant de huit mètres, on pourrait s'étonner de l'augmentation continue de la taille des instruments avec le temps.

Plusieurs raisons à cela, en premier lieu, en augmentant la taille d'un télescope, même sans augmenter sa résolution, on augmente la surface collectrice de précieux photons et donc la sensibilité de l'instrument, afin de découvrir des sources toujours plus faibles, toujours plus lointaines.

D'autre part, les effets dévastateurs de la turbulence sont inversement proportionnels à la longueur d'onde. Pour comprendre cet effet, il nous faut encore faire une petite digression vers la caractérisation théorique de l'atmosphère: Un modèle très étudié de l'atmosphère, et confirmé dans ses grandes lignes par plusieurs études expérimentales, est celui de Kolmogorov. Ce modèle consiste à représenter l'atmosphère comme une structure semi-fractale de masses d'air d'échelles décroissantes depuis l'échelle externe   correspondant aux plus grands phénomènes macroscopiques (couches d'air, vents, perturbations météorologiques) et transmettant leur énergie cinétique d'une échelle à l'autre par tourbillonnement jusqu'à la plus petite échelle  où l'énergie se dissipe en chaleur par frottements visqueux. L'étude mathématique de ce modèle permet de faire ressortir plusieurs paramètres caractérisant l'état de la turbulence.

L'un des principaux est le diamètre de Fried, au delà de son expression mathématique dans les équations caractéristiques de la turbulence Kolmogorov, citons cette définition: pour un site, une turbulence et une longueur d'onde d'observation donnés, est égal au diamètre d'un télescope qui ne subirait pas la turbulence et dont la qualité d'image est équivalente à celle d'un télescope infini qui lui la subirait.

Les observations faites en infrarouge, par exemple, sont moins, voire pas du tout, affectées par la turbulence. Ainsi, l'observation en infrarouge est l'une des méthodes d'observation qui justifie la construction de grands télescopes.

D'autre part, et même principalement, pour ce qui est des télescopes modernes, outre l'augmentation de la sensibilité, un grand télescope peut être exploité au maximum, même dans les courtes longueurs d'onde (visible), car il existe des techniques pour compenser la dégradation de la qualité due à l'atmosphère: l'optique adaptative en est une, mais historiquement, les premières mises en application furent différentes. On peut par exemple, en utilisant des séries d'images courte pose, ``geler'' la turbulence, et ensuite, par des techniques variées, allant du simple re-centrage et addition (``shift and add '') aux techniques les plus évoluées d'interférométrie des tavelures (``speckle imaging'') et de déconvolution reconstituer des images de qualité proche de la limite de diffraction de l'instrument, lorsque le rapport signal sur bruit le permet.

L'effet de la turbulence est pratiquement équivalent à celui d'un miroir déformant qui changerait de forme plusieurs fois par seconde. L'idée maîtresse de l'optique adaptative, qui revientgif à Horace W. Babcock est en théorie très simple: puisque le front d'onde est déformé par la turbulence, pourquoi ne pas le redresser ? C'est-à-dire justement placer un élément déformable  sur le trajet optique, en amont de notre instrument d'observation, qui applique des déformations opposées à celles dues à la turbulence (conjugaison de phase). Pour ce faire, on prélève une partie du faisceau (une gamme de longueurs d'onde par exemple) pour analyser la turbulence, en extraire les déformations du front d'onde que l'on applique donc à l'opposé, par un miroir déformable par exemple, afin de restituer un front d'onde le plus conforme possible à l'original.

L'idée de Babcock n'a pas été immédiatement appliquée, essentiellement parce que la technologie de l'époque ne le permettait pas. La première résurgence astronomique de cette idée aura lieu près de 25 ans plus tard, en 1977, aux Etats-Unis par J.W. Hard. Les développements lors de la décennie suivante profiteront essentiellement de l'impulsion des programmes militaires, en particulier liés au projet de ``guerre des étoiles'' (SDI) américain et dont les résultats restèrent confidentiels défense jusqu'à une date récente. C'est par une collaboration européenne, et principalement en France, que naquit le premier prototype, spécifiquement dédié à l'astronomie, qui produisit des images astronomiques. Initié en 1985, c'est en 1989 que le projet Come-On a démontré la faisabilité d'un système d'optique adaptative pour l'astronomie. Ce système dont l'objectif était de démontrer l'intérêt et la faisabilité de l'optique adaptative en vue du grand télescope européen VLT a brillamment rempli ses objectifs, et les a même dépassés. Il a en effet permis d'obtenir des résultats astrophysiques importants. Devant l'intérêt du système, et pour corriger certaines limitations dues à sa jeunesse de prototype, une version améliorée, appelée Come-on+, a été développée et exploitée avec succès, fournissant de superbes résultats astrophysiques. Come-On et Come-on+ furent le fruit de la collaboration entre l'Observatoire de Paris, l'Université de Paris VII, l'Onera, les sociétés Laserdot, LEP, et l'ESO . Un seul autre système a, à ce jour, fourni des résultats astrophysiques publiés [Roddier 95], il s'agit du système de François Roddier de l'Université de Hawaii, dont une version intégrée, PUEO. Parallèlement, presque tous les projets en cours de grands télescopes (Gemini , Keck , MMT , Subaru , VLT , ...) et de nombreuses expérimentations pour des télescopes plus courants vont incorporer des systèmes d'optique adaptative.

La récente évolution de Come-on+ vers un instrument plus convivial et efficace, Adonis, est le cadre de ce travail de thèse.

Nous avons dit que pour corriger les effets de la turbulence atmosphérique, il suffisait de mesurer les déformations du front d'onde et de les appliquer, à l'opposé, grâce à un élément déformable. Comment faire plus concrètement ? Pour l'analyse du front d'onde, de nombreuses techniques sont envisageables, issues le plus souvent des outils d'analyse de la qualité des instruments optiques, qui depuis longtemps ont permis de caractériser les systèmes. Nous allons examiner plus en détail le principe du système mis en oeuvre dans Come-On, sans approfondir les multiples autres possibilités (senseur de courbure, interféromètres,...voir) qui, du point de vue d'un contrôle de haut niveau de l'instrument, ne sont pas fondamentalement différentes.

Come-On et Come-on+ utilisent un senseur de front d'onde  de type Shack-Hartmann . Il s'agit d'une matrice de micro-lentilles, découpant la pupille du télescope en sous-pupilles. Chaque micro-lentille forme une imagettef. La pente locale du front d'onde dans la sous-pupille a pour effet d'excentrer l'imagette. La mesure de ce décentrement pour chaque sous-pupille représente la dérivée du front d'onde en ces points. L'ensemble de ces mesures à un instant donné est appelé vecteur des pentes. Ce vecteur de mesure est transmis à un calculateur temps réel, qui reconstruit le front d'onde et détermine les modifications à appliquer aux miroirs correcteurs. L'analyseur  utilisé dans Come-on+ comporte 7 par 7 micro-lentilles, mais la forme de la pupille (disque et obstruction centrale) conduit à 32 sous-pupilles éclairées, dites ``utiles''.

Come-on+ utilise deux miroirs correcteurs. En effet, la décomposition des déformations dues à l'atmosphère montre que l'un des effets principaux, en terme d'énergie (87%), est une translation des images instantanées (basculement). Aussi, un miroir spécifique à deux degrés de liberté (dit Tip-tilt , ou simplement Tilt ) corrige cet effet et recentre en temps réel les images, tandis qu'un autre miroir, le miroir déformable, constitué d'une matrice d'actuateurs piézo-électriques (8 fois 8 dont 52 utiles) recouverte d'une membrane souple de silicium poli, corrige les autres aberrations optiques.

Le processus de reconstruction du front d'onde utilisé est finalement assez simple dans son principe, une description exacte et détaillée est par contre là encore un problème complexe à part entière que l'on trouvera abondamment discuté dans la littérature, et je conseillerais en particulier. Je m'attache ici à expliquer le processus sous une forme que j'appelle ``avec les mains'' (c'est-à-dire compréhensible avec un peu de physique et de mathématique de base) tout en attirant l'attention sur les points clefs. Dans le système Come-on+, plutôt que d'essayer de calculer effectivement et directement un front d'onde à partir de la mesure de sa dérivée, ce qui est un processus délicat et surtout fort sensible au bruit et aux erreurs (approche zonale), on procède comme suit. Il faut noter que le système, en première approximation, est linéaire, dans le sens où, pour un front d'onde fixe, si P est le vecteur des pentes mesurées par l'analyseur ``pas trop près'' des conditions limites, correspondant à un vecteur de commandes (état, voltages appliqués aux miroirs) C lui-même ``pas trop près''gif des limites, il existe une matrice I telle que pour tout ajout aux commandes dC, on observe un vecteur P+dP avec dP=I x dC. Lorsque, comme dans notre cas, on recherche la transformation inverse, ici partant des changements de pentes observés pour obtenir un changement à appliquer aux commandes, on démontre qu'il existe une matrice M telle que dC=M x dP. La matrice I est la matrice d'interaction , que l'on obtient en agissant successivement sur chaque actuateur (dans une phase de calibration de l'instrument), et en enregistrant les pentes correspondantes. Lors du calcul de l'inverse généralisée (méthode SVD , Singular Value Decomposition , par exemple), on commence par diagonaliser la matrice d'interaction. Le filtrage des modes  (vecteurs propres) dont les valeurs propres sont trop faibles (trop peu sensibles au travers du système) permet d'augmenter grandement la stabilité. Le choix judicieux de matrices de changement de base permet d'autre part d'envisager toute une classe d'optimisations qui sont le sujet de la thèse sur l'optimisation modale d'Eric Gendron. Optimisation, qui consiste, dans un grossier raccourci, à moduler les gains  de différents modes, en fonction des conditions effectives de la turbulence du moment, et en particulier des rapports signal à bruit pour chaque mode (et donc, ne pas commander un mode donné au delà de la limite où on réinjecterait plus de bruit que de correction utile pour ce mode).

L'optique adaptative, bien qu'offrant des perspectives extraordinaires, n'est tout de même pas exempte de son lot de problèmes et de limitations.

L'analyse du front d'onde, par exemple, qui doit être effectuée assez souvent pour corriger effectivement la turbulence, doit donc utiliser pour ce faire un flux de référence . Comment obtenir un flux à analyser ? On peut utiliser l'objet à observer lui-même. Théoriquement, une onde originellement plate est nécessaire, c'est à dire une source ponctuelle à l'infini (étoile très éloignée), mais en fait, un analyseur de type Shack-Hartmann, peut s'accommoder d'objets étendus tels que galaxies ou amas, à condition qu'ils possèdent un élément distinctif plus brillant (coeur de galaxie, ... jusqu`à environ 4'') et de prendre quelques précautions dans le traitement des images de l'analyseur (diaphragme de champ, seuillages, ...). Il est possible, dans Come-on+ par exemple, d'utiliser l'objet comme référence d'analyse sans perdre de précieux photons pour l'observation elle même car l'analyse et l'observation n'ont pas lieu dans les mêmes bandes spectrales (longueurs d'onde). L'analyse utilise le flux de lumière visible et les observations utilisent le flux proche infrarouge (comme nous l'avons vu, la déformation en amplitude absolue du front d'onde ne dépend pas de la longueur d'onde, mais les effets sur la qualité des images en dépendent fortement, aussi obtient-on de meilleurs résultats en observant les images corrigées dans les plus grandes longueurs d'onde).

Cependant, étant donnée la fréquence d'analyse nécessaire, le flux ou la quantité de lumière de l'objet de référence est le principal facteur limitant. Si l'objet à observer n'est pas lui-même assez brillant pour fournir un flux suffisant sur l'analyseur, il faut alors trouver une autre solution: l'utilisation d'une étoile de référence proche, si elle existe, peut convenir. Si l'on analyse les caractéristiques de la turbulence on s'aperçoit en effet que la correction de la turbulence analysée en un point s'applique aussi avec une faible erreur en un autre point, pourvu que l'angle qui les sépare soit assez petit. En effet des faisceaux lumineux venant de deux points distincts traverseront des portions d'autant plus communes des couches turbulentes et subiront des déformations d'autant plus similaires que ces deux points sont proches. La correction appliquée à un objet de référence vaut pour cet objet et pour ses très proches voisins, mais elle devient de moins en moins valide au fur et à mesure que l'on s'écarte de cette référence. L'étude de ce domaine de validité spatiale, dit d'isoplanétisme , et de ses effets est elle-même un sujet très complexe, à la pointe des recherches. La distance maximale ``pratique'' entre l'objet et sa référence est environsoit 5 secondes d'angle dans le visible à près d'une minute d'angle en infrarouge.

Notons que tous les facteurs que nous avons évoqués et qui s'aggravent avec une longueur d'onde plus courte, expliquent, avec les contraintes technologiques, pourquoi les systèmes actuels d'optique adaptative se limitent à une correction dans l'infrarouge et le proche infrarouge (et à une correction partielle dans le visible pour les systèmes les plus rapides).

Une autre solution, pour pallier à cette limite fondamentale de l'optique adaptative astronomique, où les photons sont le plus souvent extrêmement rares, est l'utilisation d'une étoiles artificielle. Grâce aux progrès constants des techniques Laser (là encore entraînées par les recherches militaires types SDI), il est aujourd'hui possible de créer une étoile artificielle au-dessus de la turbulence, dans les hautes couches de l'atmosphère (90 km), par l'excitation des atomes de sodium qui y sont présents par exemple. Cette étoile peut alors servir de référence, et être placée à volonté là où l'on souhaite observer, évitant la quête parfois infructueuse d'une étoile de référence naturelle. Cette abondance potentielle de photons permet aussi d'envisager une correction dans le visible, à condition cependant de dimensionner le système bien plus largement (nombre de zones d'analyse et d'actuateurs et donc puissance de calcul, coût,...).

Cependant, l'étoiles Laser n'est toutefois pas une solution miracle elle non plus. En effet, plusieurs problèmes se posent. L'un d'eux, l'anisoplanétisme de la focalisation, ou effet de cône, est dû au fait que l'étoile artificielle créée n'est pas à l'infini. C'est donc un faisceau conique et non cylindrique qui traverse la turbulence, ce qui implique que les déformations mesurées sur le front d'onde artificiel ne sont pas exactement celles permettant de corriger l'objet observé. Cette limitation peut être levée en utilisant plusieurs étoiles Laser (au prix d'une complexité et d'un coût encore accru). Une autre limitation, plus sévère car agissant directement sur la couverture du ciel que l'on peut espérer du système, est due au fait que le rayon Laser, en traversant la turbulence pour aller exciter les couches hautes, subit lui aussi les déformations. En particulier on montre qu'ainsi (en vertu du principe de retour inverse de la lumière), le tilt global ne peut être corrigé. François Rigaut et Eric Gendron ont étudié ce problème et proposé une solution dite d'optique adaptative double canal, à base mixte Laser et étoile naturelle. D'autres propositions ont aussi été formulées (comme l'approche polychromatique de R. Foy).

De plus, malgré de récents progrès, la mise en oeuvre de ces systèmes à étoile Laser, et en particulier leur implantation sur des sites (télescopes) déjà opérationnels, est toujours très délicate et coûteuse (modifications importantes pour ajouter le laser et son guidage, coût des lasers, problèmes de sécurité, de pollution lumineuse du site, d'alimentation électrique et d'infrastructures pouvant causer de la turbulence !...). Ces problèmes, s'ils ne sont certes pas insolubles, expliquent pourquoi les systèmes astronomiques opérationnels actuels ne comportent pas encore d'étoiles artificielle (cependant plusieurs systèmes d'études et d'expérimentation existent ou ont existé et ont validé le concept), même s'il est probable que cette addition très prometteuse sera un jour partie intégrante de la plupart des systèmes d'optique adaptative.

D'autres limitations, outre la chasse aux rares photons pour l'analyse et des problèmes d'anisoplanétisme, introduisent aussi dans le système erreurs, bruits et limitations. On en trouvera une discussion plus poussée dans la thèse d'Eric Gendron mais citons: les erreurs d'ajustement et de sous modélisation dues à la géométrie et à la précision des miroirs correcteurs (qui ne peuvent pas reproduire parfaitement un front d'onde quelconque). Les erreurs de discrétisation, dues principalement au traitement numérique en certains points de mesures (spatiaux et temporels) de phénomènes physiques continus et les erreurs de sous-échantillonnage dues à une utilisation des systèmes trop près voire au delà de leurs limites (turbulence trop rapide mesurée trop lentement, turbulence de diamètre de cohérence trop petit pour un nombre de sous-pupilles d'analyse trop faible, ...). Le nerf de la guerre, que livrent les ``adaptivopticiens'' contre la turbulence est bien finalement la chasse au bruit, au meilleur rapport signal/bruit global. Tout se résume finalement en la nécessité d'adapter (d'optimiser) autant que possible les caractéristiques du système pour qu'un nombre suffisant de photons soient correctement mesurés, fournissant un signal suffisamment significatif pour permettre de commander sans trop d'erreur et assez prestement les miroirs correcteurs. Derrière cette phrase fort longue se cache en fait une multitude de paramètres, qui, tant au niveau de la conception d'un système d'optique adaptative que de son utilisation, nécessitent force optimisation.

J'espère que le lecteur néophyte a maintenant une vision plus nette de ce qu'est l'optique adaptative, et des principaux paramètres qui interviennent. La section suivante présente la réflexion qui a mené au travail que présente le reste de cette thèse.

A   B   C   D   E   F   G   H   I   J   K   L   M   O   P   Q   R   S   T   U   V   W   X   Y   Z


La lumière
La lumière solaire

L'atmosphère terrestre
La fine couche de l'atmosphère terrestre

L'oeil humain
llustration: l'oeil humain

Les étoiles
Des étoiles

L'observation du ciel aux jumelles et télescope
observation au télescope

 

 

 


Details

Site de vulgarisation scientifique consultable aussi bien sur ordinateur, tablette que smartphone, il est destiné à tous ceux qui sont curieux de découvrir les merveilles de l'univers et qui souhaitent rester à l'écoute de l'actualité spatiale

©2016 Tiens l'univers.
Design by AwfulMedia.com